If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+14x-30=0
a = 7; b = 14; c = -30;
Δ = b2-4ac
Δ = 142-4·7·(-30)
Δ = 1036
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1036}=\sqrt{4*259}=\sqrt{4}*\sqrt{259}=2\sqrt{259}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{259}}{2*7}=\frac{-14-2\sqrt{259}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{259}}{2*7}=\frac{-14+2\sqrt{259}}{14} $
| 2c-7c=45 | | 92.3-p=-124.9 | | 5x-14=×+30 | | 1x2+2×-4=0 | | 2w+2(2w+20)=34 | | 0.6-0.005x=0.2 | | 19y-7(15+3)=165 | | 0.6-0.01x=0.2 | | 0.6-0.05x=0.2 | | Y8x-1=4(3x-1) | | 5-2x=1+3x | | 4q+4=2q+4+32/q | | Y5x+7/2=1/4 | | 9w=180 | | 12x+54=-8x-4(-5+2) | | (9x+2)=(2x+9) | | -7(r+4)-5r=-4(1+21) | | 3(6r+5)+2r=3(r-5)-5r | | 28+7a=7(8+0) | | I(16x+22)=6x+23 | | 6(n-2)=2n-1+2n-9 | | -7(3n-7)=31-5n | | 3-3=n | | 4(x+2)=3x-1+x+9 | | 2x+2(x+2)=3x-6-x+10-2x | | (5/x)+5=(5/2x)+(31/6) | | 2+3(n-2)=5n-8 | | 3+4d−14=15−5d | | Y+4+3y-5=y+26 | | 4a+a+a+(a-5)=30 | | 4x5/2=8 | | 2(3y-3)=-42 |